- > Port size: DN25, DN50, **DN80** - > Internal and external dome loading Note: no pilot regulator needed for internal dome loading for gas service - > Balanced design ensures a stable delivery pressure, even with a varying inlet pressure - > Design option offers optimised performance at very low delivery pressures (< 5 barg) ## **Technical features** K40 Series Dome Loaded Pressure Regulators offer excellent pressure control at low to medium delivery pressures. Below 5 barg, the build standard is adjusted to increase sensitivity offering improved pressure control and flow performance. Its heavy duty construction makes the K40 Series ideal for arduous conditions and harsh environments. ## Applications: - Marine industries - Gas & Oil industries - Off shore / aggressive environments - Nitrogen plants - Brewery plants - Pressure test rigs - Mining Industries - High flow purge systems - Steel industries ## Medium: Liquid and gases ## Maximum inlet pressure: 40 barg (580 psig) #### Outlet pressure range: 0,5 ... 40 barg (7.3 ... 580 psig) #### Low pressure version: Inlet pressure: 25 barg (363 psig) ### Outlet pressure: 0,1 ... 5 barg (1.4 ... 73 psig) #### Flow: See table below #### Dome loading: Internal or external via G1/4 connection Domes should be loaded with air or inert gas # Leakage: Bubble tight (standard, typically 10⁻⁶ atm.cm³/sec⁻¹) Helium leak tested to 10⁻⁸ atm.cm³/sec⁻¹ (on request) #### Ambient/Media temperature: NRR: -10 ... +100°C (+14 ... +212°F) FPM: -20 ... +150°C (-4 ... +302°F) EPDM: -20 ... +115°C (-4 ... +239°F) Nodular iron body -20 ... +150°C (-4 ... +302°F) #### Materials: Body: cast nodular iron BS EN 1563 EN-GJS-400-LT Dome: cast nodular iron BS EN 1563 EN-GJS-400-LT Seat: stainless steel BS EN 10088 1 4401 Trim: Elastomer Elastomers: NBR, FPM, EPDM ### **Technical data** | Symbol | Port size | Valve seat s
(mm) | ize
(inch) | Seat flow ar
(mm²) | ea
(inch²) | Port flow ar (mm²) | ea
(inch²) | Flow coeffic
(Kv) | cient
(Cv) | Model | |--------|-----------|----------------------|---------------|-----------------------|---------------|--------------------|---------------|----------------------|---------------|-------| | | DN25 | 12,7 | 0.5 | 97 | 0.15 | 387 | 0.60 | 2,9 | 3.4 | K41 | | | DN50 | 25,4 | 1 | 323 | 0.50 | 1503 | 2.33 | 9,7 | 7.9 | K42 | | | DN80 | 38,1 | 1.5 | 968 | 1.50 | 2858 | 4.43 | 29 | 34 | K43 | # Option selector spare kits | Flange size | Substitute < | |-------------|--------------| | Ø 25 | 1 | | Ø 50 | 2 | | Ø 80 | 3 | # **Spares BOM** | Description | Material | QTY | Requestion Standard pressure | uired
Low pressure | |------------------------|------------------------|-----|------------------------------|-----------------------| | Bonded seal | Steel/ Rubber | 1 | Χ | Χ | | Circlip | BS 5216-HD 3 | 2 | Χ | Χ | | Needle valve | BS 3S 145 (normalised) | 2 | Χ | Χ | | 'O'-Ring | Rubber | 2 | Χ | Χ | | Standard diaphragm | Rubber | 1 | Χ | _ | | 'O'-Ring | Rubber | 1 | Χ | Χ | | Spring | Various | 1 | Χ | Χ | | 'O'-Ring | Rubber | 1 | Χ | Χ | | Seat | BS EN 10088 1.4401 | 1 | Χ | Χ | | Valve assy (PAD only) | Various | 1 | Χ | Χ | | 'O'-Ring | Rubber | 1 | Χ | Χ | | 'O'-Ring | Rubber | 1 | Χ | Χ | | Gasket | Rubber | 1 | _ | Χ | | Low pressure diaphragm | Rubber | 1 | _ | Χ | ## **Dimensions** Dimensions in mm Projection/First angle - 1 G1/4 dome vent and external load connection (plugged) - 2 Load regulation screw for external or internal pressure - 3 Load regulation screw for internal pressure only - 4 8 holes (K43 only), 4 holes (K41 & K42) | Α | В | С | D | E | F | G | Н | øJ | øΚ | Weight
kg | Model | |-----|-----|-------|-----|----|-----|----|-----|----|-----|--------------|-------| | 171 | 115 | 65 | 160 | 15 | 114 | 25 | 124 | 14 | 85 | 6.5 | K41 | | 276 | 165 | 102 | 230 | 20 | 194 | 50 | 165 | 19 | 125 | 18.5 | K42 | | 317 | 200 | 128.5 | 310 | 33 | 217 | 75 | 229 | 19 | 160 | 37 | K43 | ## Warning Do not use these products where pressures and temperatures can exceed those listed under **»Technical features«**. Before using these products with fluids other than those specified within published specifications, consult IMI Precision Engineering, Thompson Valves Ltd. Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes. The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure. System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided. System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products.